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A gas-saturated porous body is considered as a microinhomogeneous medium consisting of 
a homogeneous linearly elasic matrix and ellipsoidal pores filled by a gas at pressure p. 
The positions of the centers and orientations of the inclusions have a Poisson distribution 
in each fixed region of the medium. The parameters of the medium are statistically homo- 
geneous and ergodic in a macroregion W with dimensions significantly exceeding the charac- 
teristic dimensions of the inhomogeneity. The results of a significant number of studies 
evaluating the properties of such a medium are either invariant relaitve to the form of the 
pores [i, 2] or do not consider multiparticle interaction of the inclusions with sufficient 
accuracy [3]. In the widely used effective field method [4] the interaction of inclusions 
is considered by summation of fields from each point singularity located within some effec- 
tive field, the structure of which is independent of the properties of the inclusion con- 
sidered. The present study will present a generalization of the method in which any finite 
number of inclusions are located in the effective field; so that upon each inclusion there 
acts a stress field which is dependent on the properties of the inclusion considered. The 
binary interaction of the inclusions is constructed by the asymptotically exact method of 
successive approximations. The effective properties of the gas-saturated medium and the 
stress concentration near individual inclusions are evaluated. 

i. General Relationships. We will consider a macroregion W, consisting of a matrix 
with modulus of elasticity tensor L and P6isson set X = (Vk, Xk, ak, Wk) of ellipsoidal 
pores v k with characteristic functions Vk, centers Xk, semiaxes a~(i = i, 2, 3) and set of 
Euler angles k- The current gas pressure in the pores p and the matrix modulus L are 
assumed constant within the macroregion W, the dimensions of which are significantly smaller 
than the characteristic dimensions of the construction or region considered. The relation- 
ship between stresses and deformations at a micropoint within the medium can be represented 
in the form 

= L0( l  - v )~  - qv~ ( 1 . 1 )  

where  V = UVk; q = P 6 i j .  S u b s t i t u t i n g  Eq. ( 1 . 1 )  in  t h e  e q u i l i b r i u m  e q u a t i o n ,  we o b t a i n  
k 

VLoV u == (VLoVu + vq)V. ( 1 . 2 )  

Here u(x) is the displacement; 7 is the symmetric gradient operator. Let a homogeneous 
stress field o ~ be specified at infinity, whereupon Eq. (1.2) may be reduced to an integral 
equation 

u = u 0 - ~ u (x  - y) (VLo VU + Vq) V (y) d~ ( 1 . 3 )  

( h e r e  U i s  t h e  G r e e n ' s  t e n s o r  o f  t h e  Lama e q u a t i o n  o f  a homogeneous  medium w i t h  e l a s t i c i t y  
tensor L 0 and dislacement u ~ at infinity). After application of the operator V to Eq. (1.3) 
and transformation of the integral by Green's theorem we center the equation obtained, 
i.e., subtract from both sides their averages over the ensemble X; 

r (x) = <s> - -  ~ G ( x - -  g) {[L0s(g) + q l V ( g ) - -  [L 0 @V> + q<V>l }dy~ ( 1 . 4 )  

whe re  i t  h a s  been  c o n s i d e r e d  t h a t  a t  s u f f i c i e n t  r e m o v a l  x f rom t h e  b o u n d a r y  3W t h e  s u r f a c e  
i n t e g r a l  o p e r a t i o n  can  be r e g a r d e d  as  a v e r a g i n g ;  h e r e  and be low < ' > ,  < . l x 2 ;  x l>  d e n o t e  t h e  
a v e r a g e  and c o n d i t i o n a l  a v e r a g e  o v e r  t h e  s e t  X, where  a t  t h e  p o i n t s  x l ,  x2 t h e r e  a r e  l o c a t e d  
inclusions x I ~ x2, G = VVU. As Ix - y[ + ~ in Eq. (1.4) the expression in curly brackets 
vanishes and the integral converges absolutely over the entire integration region. 
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To determine the effective elasticity tensor L* and the "gas" expansion coefficient ~* 
in the equation of the macrostate 

<@ = L*i<~> -- ~* q) (1.5) 

it is necessary to evaluate the tensors B, B*: 

<eV> = B<s>, <e> = ~ * q  ( 1 . 6 )  

a t  p = 0 ,  o ~ ~ <o> = LoVu ~ ~ 0 a n d  p ~ 0 ,  o ~ = 0 ,  s o  t h a t  

L * - -  L o ( I - - B ) .  ( 1 . 7 )  

I n  Eq.  ( 1 . 5 )  t h e  v a l u e  o f  q i s  p r o p o r t i o n a l  t o  t h e  c u r r e n t  v a l u e  o f  t h e  g a s  p r e s s u r e  i n  
t h e  p o r e s ,  w h i c h  i s  r e l a t e d  i n  an  o b v i o u s  m a n n e r  t o  t h e  s p e c i f i e d  a n d  e a s i l y  e x p e r i m e n t a l l y  
d e t e r m i n e d  mean v o l u m e  g a s  c o n c e n t r a t i o n  c i n  t h e  m a c r o r e g i o n  W b y  t h e  H e n r y  a n d  H a n d e l e e v -  
C l a p e y r o n  l a w s  

p = c [ ( l  - -  <V>)(t ~ - < a . >  - -  <~uV>)r  4 - < V > ( t  + < e . V > ) ~ t / R T l - ~ ,  ( 1 . 8 )  

where the first term with Henry constant F describes the contribution of the mean concentra- 
tion of gas dissolved in the solid phase, and the second considers the presence in the pore 
phase of gas with a molecular weight ~ at temperature T; R is the universal gas constant. 
Equation (1.8) can be generalized to a gas mixture in an obvious manner. 

Thus to obtain Eq. (1.5) it is necessary to evaluate the mean deformation of the pore 
phase <eV> under the action of the applied external stress o ~ and the gas pressure, which 

depends on <eiiV>. 

2. Effective Field. We will fix an arbitrary realization of X and consider the 
effective field e(x), x ~v k in which an inclusion v k is located: 

~h (x) = <e> - ]G (x - -  y) {[L0~ (y) + q] V (U; x) - -  

- -  [L0 <~V> + q <V>]} du (V (y; z) = V ( y ) \ V ~  (x)). 

( 2 . 1 )  

Since the field X is random ~k(X) is als_o random. To find the mean over the set 
X <~k> we use the hypotheses: i) the field e k is homogeneous in the vicinity of the inclusion 
v k and depends on the dimensions and orientation of Vk[ 2) each n (n > i) of the inclusions 
vl, ..., v n is located within its own effective field,~1,..., n, which is independent of the 

properties of the inclusions considered. 

The homogeneous field ~k(X) of Eq. (2.1) uniquely defines the deformations of the k-th 

inclusion 

e + = ~h (~h  @ Pl, q), A k  = ( [  - -  PhL0)-l , :  ( 2 . 2 )  

where P~ =--]G(x--y)Vk(y)dy(x~va) does not depend on x and the dimensions of v k [5]. The 

limiting value of the deformation tensor in the matrix near the boundary of the ellipsoid 
at the point x0 ~ 8v k with external normal unit vector n to 8v k is defined by the expression 

e - ( n )  = ( [  - -  K k ( n ) L o ) A h ~  @ ( P k  - -  K k ( n ) ) A h q  �9 ( 2 . 3 )  

Here Kk(n) is the change in Pk(x) at the point x0~ 8v k upon transition through 8v k in the 
direction n, known for an isotropic matrix [6]. From Eqs. (i.i), (1.2) with consideration 

of hypothesis i we find 

~ (x) = <e> -- ~ C (x -- y) [A (y) [L~ (y) + q] V (y; x) -- (2.4) 

- -  [L 0 < A~V> + < AV> q]} dy. 

3. Evaluation of Binary Inclusion Interaction. In Eq. (2.4)it is necessary to 
evaluate e(y) in the vicinity of the inclusions v m ~y given that at point x there is an 
inclusion v k. We will assume that in the macroregion W there are only two inclusions: 
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( 8O 3. 1 ) e~ (x) = - -  J G (x - -  y) [L08 (y) + q] (V~ (y) + V~ (y)) dy. 

( 3 . 1 )  by  t h e  s u c c e s s i v e - a p p r o x i m a t i o n  m e t h o d  w i t h  c o n s i d e r a t i o n  o f  h y p o -  We solve Eq. 
thesis 1 and the zeroth approximation g0(x) = 0, X~Vk: 

(Lee(x) +q)v~ = --R~fkme ~ + F~ + R~T~m, x ~ v~ (3.2) 

S(Xk -- xm)(Loe(x) + q~m = --Jam 8~ + e ~ +. Tam, x ~ Vm, 

R~ = - - A ~ L ~ ,  Fm = A~qv"-m, ~m = rues Vm; 

Jh~= ~ ~ (sR~SRh/(SRm/:  ( 3 . 3 )  
i=O j=o 

r ~  = E ~ (SR~SB~) ~(sR~/s (F~) ~ (e~)~ 
i=O j=o 

k = i, 2, m = 3 - k, s = [! - Jl" To proceed further it will be necessary to evaluate 
{J~m)~m, ~Tam~km , where <<'>>km is the operation of averaging over orientations mk, ~m 

and positions x m on a sphere of radius Irl = iXk - Xm] with center at Xk. 

4. Evaluatio n of L*~ ~*. We will describe the structure of the composite of the 
binary distribution function r , the probability of location of an inclusion v m in 
the region v m for a fixed inclusion v k. Since inclusions do not intersect each other, we 
take 

(Vm I Vk) = ~ (~m) ( l  - -  Vhm)/kin ( I r ] ) (rues W) - I ,  ( 4 . 1  ) 

where from the normalization condition <~(~m)> = I, ]~m~]r]) = nv, if vm~X v (where n v is 

the numerical concentration of inclusions of the V-th pore size Xv); V' is the characteristic 
km 

function of a sphere with center at x k and radius akm = mina~+maxa~ We ave=age Eq. 
4 

(2.4) over the set X('[v k) with the aid of (4.1): 

<~> = <8>- ~ G (z-y) {<A(y) [Lj(y) + q] v (y; ~)i y; 

~> - [<M> + <F>]} dy, 

(4.2) 

To calculate the moments in Eq. (4.2) we use hypotheses 2 with n = 2 and the assumption 
~l~ = ~ = const. Averaging Eq. (4.2) over values of mk and akm with use of Eq. (3.2) and 

ek = $ we obtain 

<e'> = D ( < s > -  j" ((Tam--SFm--G(y)FmF~m(y)) ]km}hmdy), ( 4 . 3 )  

= S  -sR -G �9 

From Eqs. (2.2) and (4.3) we find the mean deformation of the pore phase 

<~v> = D <AV> [<~> + L~lq] "- L-f 1 <V> q. 

Substituting Eq. (4.4) in Eq. (i.6), (1.7), (2.3) we define 

L* = L o ( I  - -  D <AV'>),, [~* = (L*) -a  - -  Lrlo 

<s-  (n)> = {(I - -  Kh (n) io )  A h <8> + (Pk -- Ka (n)) Akq - -  J~ {(Th,n - -  SF,~ --  

--  G (y) F=Vi,~ (y) ) /~,n)k~dy} n .  

(4.4) 

(4.5) 
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We define the pressure p for known L*, 6" by simultaneous solution of Eqs. (1.5), (1.8), 
(4.4), (4.5). 

5. Example. We will consider a uniform distribution of orientations ek, where the 
tensors <<R>>I~ n, <<Jkm>>km are isotropic. Moreover, to simplify calculations we use a point 
approximation for the inclusions S(Ir I) = g(Ir [) [4, 6], asymptotically exact as Jr I + ~. 
Then for inclusions of one size, using the first terms of the series, we have 

< J,e - -  I - -  S R2~>,~ = < S R2S R ,}~, = (3J],, 2J~.,), 
<r~, - SF,} , ,  = <SR~SF~},, = (3r],_, 2T~,), 

3 1 

ffi (3k0 + 41~o)-', ~ = (31.to)-*, ' %' = - -  (3ko + 4~o)'(3Pr (3ko :I- 41-to))-z,: 

where for the isotropic tensor Bijks 

8 B = (3B*I, 2B ~) = 3B*NI + 2B2N~; Nz = -f 8i~ h~; 

N~ = ~ (8~8~ + 8~8~ " 2 

<Ai> L o f i  a{ ----- (3k~, 2~0; <A> = ~ A~p (o)) din; L o = (3ko, 2[ao). 
.i=1 

To obtain the expressions 3T~2, 2T~= in the functions 3J~2, 2J~2 we replace (~ki, 2~i) 
�9 S . 

by  (3t~, 2t~) ----<Aj> q-j-~-x a~. 

a ~ a>>aS)  and f ( I r l )  = n For example, for spheroidal pores (a I '= = 

3k o - -  2leo 3t~/p = klko 4 (~ - ~') S (t - v ) ( 5 -  ~) (a)', v = .  . 
= . ~5~  2 ( 3 k o + ~ o )  

For spherical inclusions (a z = a 2 = a s = a) 

3t,Ip ---- k/k o = 3k~ (a) s, ~/Po = 59(-kk~+~~ (a) s. 
4~o' o -I-- ~o 

In the case of incompressible material (v = 1/2, 13" = l/L*) 

3k*---- 3"~ k ( 1 - - ~ t 6  cz), '~ 3k*=4~~ ( 1 - - ~ c 2 ) , . ,  % \ c i  (5.1) 

ks  f:  2 :  3' 4 

: 0,75 

~ o4 o,2 o,3 o,, "~e: ~ 
Fig. i 
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for planar spheroidal and spherical pores; the values of c i in the expressions presented 
have different physical meanings. Figure i shows normalized values of ksd = k*cz/p0, and 
k s = 3k*c2/4~0 for planar spheroidal and spherical inclusions, as calculated with Eq. (5.1) 
in curves i, 2; curves 3, 4 are values of Ksd and K s calculated with consideration of only 
two terms in expansion (3.3), as was done in [4]; curve 5 are values of K s calculated by 
the method of [2]. 

We note that for an incompressible matrix (v = 1/2) and planar spheroidal pores, 
according to [2, 7] k* = k 0 for any concentration cz, which indicates the invalidity of 
the theory of [2, 7] in the case of limiting ~ considered here. 

l, 

2. 

3. 

4. 

5. 
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